I. INTRODUCTION
The following protocol on heat illness has been developed by the Fort Worth Country Day (FWCD) Sports Medicine Department to provide the highest quality healthcare for the student-athletes at the FWCD. This protocol will be reviewed annually and revised as needed.

Prolonged environmental heat exposure and endogenous heat production during activity both require elaborate regulation by the endocrine, exocrine, circulatory, and neurologic systems. Heat illnesses are best thought of as a collection of illnesses that range from benign to potentially fatal. From the mild heat syncope and cramp, to moderate heat exhaustion, and the life threatening heat stroke, this guideline serves to review and provide optimal strategies for diagnosis, treatment, prevention, and return to activity for these heat illnesses.

“Exertional heat stroke has had a 100% survival rate when immediate cooling (via cold water immersion or aggressive whole body cold water dousing) was initiated within 10 minutes of collapse.” From Korey Stringer Institute, University of Connecticut: http://ksi.uconn.edu/info/basic.html

In consideration of the statement by the Korey Stringer Institute, the FWCD Sports Medicine department has adopted “cool first, transport second procedures.”

II. DEFINITION/DIAGNOSIS (in order of severity):
A. Heat Syncope:
Caused by peripheral vasodilation and pooling of blood leading to decreased cardiac output and stroke volume and thereby inducing transient loss of consciousness. This can be a very alarming situation (with the athletes “blacking or passing out.”) This is not considered an emergency on its own.

Diagnosis Is based on signs and symptoms:
1. Normal rectal temperature
2. Brief episode of fainting, improved with supine position
3. Dizziness, tunnel vision
4. Pale and wet skin
5. It is more common in athletes that have been standing for long periods of time or those who have stopped exercising suddenly.
B. **Heat Cramps:**
These are involuntary, painful contractions of large muscles during or after prolonged exercise often induced by large sodium losses via sweat in conjunction with copious water consumption. They are thought to be caused by decreases in sodium and chloride levels. Studies have shown that cramp prone athletes can lose twice the sodium in sweat as non-cramp prone teammates. It may be difficult to determine whether cramps in student athletes with sickle cell trait are due to heat cramps or sickle cell crisis, so sickle cell crisis must be considered, misdiagnosis can lead to serious consequences. Neuromuscular fatigue leads to abnormalities in mechanisms that control muscle contraction and may cause cramping.

Diagnosis: Is based on signs and symptoms:
1. Normal rectal temperature for an exercising individual (<104°F or 40°C)
2. Commonly affect hamstrings, gastrocnemius, and soleus muscles
3. Common after strenuous long exercise bouts
4. May see “salt stains” on skin or clothes from excess sodium loss
5. Normal central nervous system (CNS) function

C. **Heat Exhaustion:**
This is the inability to continue exercise in the heat. It is the most common form of heat illness seen in athletes. It does not necessarily progress to heat stroke. Heat exhaustion and heat stroke are separate entities but occur under similar hot weather conditions.

Diagnosis: Is based on signs and symptoms and by exclusion of other serious conditions (see list below):
1. Inability to continue exercise in the heat, collapse
2. Core body temperature (rectal) may be elevated (102-104 degrees F) but within normal limits for an exercising individual
3. CNS dysfunction
4. Tachycardia
5. Pale and wet skin, sweating
6. Nausea and/or vomiting
7. Headache, dizziness and/or faintness
8. Rapid/shallow breathing/weak pulse
9. Thirst
10. Rule out other serious conditions that may be present such as:
 a. Exertional Heat Stroke
 b. Hyponatremia
 c. Head Injury
 d. Hypoglycemia/hyperglycemia
 e. Cardiac event
 f. Exertional Sickling
D. **Exertional Heat Stroke (EHS): MEDICAL EMERGENCY**
This condition occurs when heat generation exceeds heat loss leading to a rise in core temperature and thermoregulatory failure. It is a serious, life-threatening condition requiring immediate medical attention. It is distinguished from heat exhaustion by CNS dysfunction in combination with a dangerously high core body temperature.

Diagnosis: Is based on signs, symptoms:
1. High core-body temperature >40°C (104°F). Only rectal temperature should be used for accurate temperature reading. Other devices may give false readings and should not be used in the absence of a valid device. In absence of a valid device, symptoms should dictate course of action (cold immersion).
2. CNS dysfunction, such as altered consciousness, coma, convulsions, disorientation, irrational behavior, decreased mental acuity, irritability, emotional instability, confusion, hysteria, or apathy

These first two signs/symptoms will distinguish EHS from other serious conditions and are the main diagnosis criteria that should be used
3. Hot, sweaty skin
4. Coagulopathy may be present: conjunctival hemorrhages, purpura, melena, hemoptysis, and hematuria
5. Rapid pulse rate (>160 BPM)
6. Rapid respirations (>20 per min)
7. Decreased blood pressure
8. Nausea, vomiting or diarrhea
9. Headache, dizziness or weakness

EHS is a medical emergency and can be a fatal condition if the individual’s core body temperature remains above 40°C for an extended period of time (usually around 30-60 minutes) without the proper treatment.

III. **HEAT ILLNESS RISK FACTORS:**

A. **Intrinsic Risk Factors**
1. History of exertional heat illness or cramping
2. Presence of a fever, other illness, skin condition (sunburn), or medical condition (sickle cell)
3. Inadequate heat acclimatization
4. Dehydration
5. Intensity unmatched to physical fitness
6. Barriers to evaporation (equipment)
7. Overweight athletes/athletes with a high body-mass index (BMI)
8. Low body fat/BMI (lean and fit)
9. Heavy or “salty” sweaters, or athletes who lose >3% weight loss during activity
10. Medications or supplements (diuretics, ephedrine, antihistamines)
11. ADD/ADHD medications
12. High intensity athletes/tendency to push oneself
13. Salt deficiency/athletes on restricted or low salt diets
B. **Extrinsic Risk Factors**
1. Vigorous activity in hot-humid environment, typically greater than one hour or prolonged exercise with minimal breaks. A wet bulb globe temperature can help determine proper exposure.
2. High temperature/humidity/sun exposure
3. Equipment-dark colors, heavy clothing, helmets, other protective equipment
4. Inadequate rest breaks
5. Inappropriate work/rest ratios based on exercise intensity, clothing, fitness, heat acclimatization, or medical conditions
6. Lack of education or awareness among coaches, athletes and medical staff
7. No access to shade or fluids during rest breaks
8. Delay in recognition of early heat illness warning signs-lack of proper medical care

IV. **MANAGEMENT OF HEAT ILLNESS**

A. **Heat Syncope Treatment**
1. Place athlete in recumbent position with legs elevated above head level
2. Remove an excess clothing/equipment
3. Place athlete in cool shaded environment
4. Monitor vital signs
5. Oral hydration if dehydrated

B. **Heat Cramp Treatment**
1. Stop exercise
2. Place athlete in cool shaded environment
3. Passive stretching of painful muscles
4. Remove constrictive clothing/equipment
5. Re-establish normal hydration status with high sodium containing fluid. Additional sodium may be needed. Review *FWCD Hydration/Fluids Replacement Guideline.*

C. **Heat Exhaustion Treatment**
1. Check rectal temperature if exertional heat stroke suspected or improvement not seen in first 5-10 minutes of treatment for heat exhaustion.
2. Place athlete in cool shaded environment.
3. Remove excess clothing and equipment.
4. Cool athlete with fans, ice towels, water dousing and move them to an air-conditioned or shaded/cool environment.
5. Rehydrate orally with sports drink if athlete is not nauseated or vomiting, or experiencing CNS dysfunction.
6. Transport to an emergency facility if recovery is not prompt and EHS has been ruled out. If symptoms persist following 10-15 minutes of treatment and EHS is suspected begin more aggressive cooling therapy.
D. **Heat Stroke Treatment**:

1. **If heat stroke is suspected, call EMS and prepare to cool the patient.**
 Immediate whole body cooling and rapid reduction of core body temperature within 30 minutes is priority. Remove any excess equipment or clothing.
 “Cool first, transport second.” MedStar should be made aware of our protocol to cool first then transport. Our protocol should be reviewed with EMS annually.

2. **Transport or assist student athlete to cold tub on Field “Crossroads.”** The cold tub will be checked and filled before every practice session during all preseason practices and when heat illness is possible. Ice chests filled with ice should accompany the cold tubs. In the event that immersion is needed ice should be mixed into the water just prior to immersion to ensure the water temperature is cold.

3. **Determine vital signs.** Assess core body temperature with rectal thermometer or rectal thermistor.

4. **When using a thermistor.** Keep the thermistor in student athlete’s rectum for continuous monitoring of temperature during immersion therapy.

5. **Maintain ABCs and monitor vital signs**

6. **Monitor CNS status**

7. **Begin ice water immersion.** Place the athlete in the ice water immersion tub up to neck level. Athletic Training staff, coaches, volunteers, and teammates may be needed to assist with a smooth and safe entry and exit.

8. **Ensure Total body coverage (head exposed).** Cover as much of the body as possible with ice water while cooling. If full body coverage is not possible due to the container’s size or water level, cover the torso as much as possible. To keep the athlete’s head and neck above water, an assistant may hold the athlete under the axillae (armpits) with a towel or sheet wrapped across the chest and under the arms. Place an ice/wet towel over head and neck while body is being cooled in tub. Use a water temperature under 15°C (under 60°F).

9. **Vigorously circulate water during emersion.** During cooling, water should be continuously circulated or stirred to enhance the water-to-skin temperature gradient, which optimizes cooling. Have an assistant stir the water during cooling.

10. **Continue the medical assessment.** Vital signs should be monitored at regular intervals, every 5-10 minutes. It may be helpful for an assistant to stand nearby in case the athlete becomes combative. Other assistants may be needed to lift or roll the athlete if vomiting occurs.

11. **Fluid administration should be started.** If a qualified medical professional is available (EMS), an intravenous fluid line can be placed for hydration and support of cardiovascular function. Rest the arm to be used on the side of the water immersion tub.
12. **Monitor the cooling duration.** Continue cold emersion until the patient’s rectal temperature lowers to 39°C (102°F). If rectal temperature cannot be measured and cold water immersion is indicated, cool for 12-15 minutes and then transport to a medical facility. An approximate estimate of cooling via ice water immersion is 1°C for every five minutes and 1°F every 3 minutes (if the water is aggressively stirred). This means, the cooling rate will be slower initially, and increase the longer the person is in the tub. For example, if someone is in the tub for 15 minutes they would cool approximately 3°C or 5°F during that time. After cooling time has elapsed, a rectal temperature should be taken to determine if cooling was sufficient.

13. **Proper Patient transfer is indicated.** Remove the patient from the immersion tub only after rectal temperature reaches 39°C (102°F) and then transfer to the nearest medical facility via EMS as quickly as possible. Notify medical facility that a patient with heat stroke is being transferred and cooling therapy has been performed.

14. **Adequate Cooling is the primary goal before transport.** If appropriate medical staff is available on-site (team physician or athletic trainer); an aggressive cooling modality is readily available (cold water immersion, ice/wet towel rotation, high flow cold water dousing); and no other emergency medical services are needed besides the rapid lowering of temperature, then always follow the “cool-first, transport second” protocol.

15. **Advanced medical support (EMS) arrival and transportation should occur.** During transportation, they must maintain a rectal thermistor, which allows body temperature to be monitored continuously. Once the athlete has arrived at the hospital, blood tests and other treatments will address issues resulting from the hyperthermia.

16. **If cold water immersion is not available or feasible given the constraints of the athletic activity being performed or location, then cool via the best available means.** A good (although not optimal) highly portable alternative is a cooler filled with ice, water, and 12 towels. Place six ice/wet towels all over body and leave on for 2-3 minutes, then place those back in cooler and put the six others on the patient. Continue this rotation every 2-3 minutes. Another alternative when a tub is not available is cold water dousing from a locker room shower or from a hose.
V. PREVENTION OF HEAT ILLNESS:
Circumstances in which heat illness conditions occur may be predictable. The appropriate modification of these circumstances should be discussed and implemented starting during the pre-season.

A. Pre-Season:
1. Thorough and complete pre-participation history and physical examination on all athletes must be performed and reviewed by the Athletic Trainer(s). Notes about history of heat illness should be identified. Note history of sickle cell trait and screening test results should be identified.
2. Type and duration of training activities within the past 1-2 months should be noted.
3. Extent of training done in heat should be noted.
4. Acclimatize athletes to high heat and humidity gradually over 7-10 days.
5. Set up strength and conditioning/acclimatization programs in summer.
6. Education athletic training staff and coaching staff on heat illness recognition, management and prevention, See APPENDIX C.
7. Discuss conditions that may limit or modify practices, See APPENDIX D.
9. Perform training sessions when medical care is available and on-site.
10. Educate parents on heat illness recognition, management and prevention, See APPENDIX B.
11. Post signs such as “HYDRATE” in locker rooms, weight rooms, training room, areas of high athlete concentration. See APPENDIX A.

B. Preparation of Sports Medicine and Practice Facilities:
1. Ice/water readily available on practice fields
2. Ice towels readily available on practice fields
3. Ice tub on site, checked and filled before every practice.
4. Large ice chests full of ice by tub or on Kubota during practice sessions, ready if immersion is necessary.
5. Ice & cold whirlpool available located in athletic training room.
6. Rectal thermometer or thermistor for core body temperature, one located in Training Room, one in Kubota ERV.
7. Practice emergency planning/communication.
8. Open communication between athletic trainers, team physicians and local EMS.
9. Athletic trainer(s) has availability of cell phones and/or two-way radios.
C. **Pre-Practice:**
1. Monitor Heat Index via internet weather report, Phone Applications and sling Psycrometer.
2. Daily communicate with coaches (adjust practice times, breaks, intensity of workout). Advise coaching staff about practice limits or modifications, *See Appendix D.*
3. Equipment check-utilize light colors, lightweight, and sun-protection clothing
4. Post Information and communicate with student-athletes
5. Provide and advise proper diet/nutrition (when and what to eat)
6. Notify Parents to stop medications with their children that may impair heat loss, increase thermogenesis, or decrease sweating (Ephedra compounds, antihistamines, large amounts of caffeine, diuretics) and substitute with safer medications
7. Emphasize proper hydration, *Review FWCD Hydration/Fluids Replacement Guideline*
8. Keep accurate weight charts, with information entered by adult staff member, focus on daily weigh-in pre and post-practice. If > 3% weight loss from day before, must increase salt/fluid intake before practice and monitor athletes for signs of symptoms heat illness closely
9. At discretion of Sports Medicine team, student athlete may be held from practice until rehydrated
10. Ice, water, etc. available
11. Designate a cool and shaded area
12. Athletic training staff ensures that there is enough ice in ice machine and/or ice chest to adequately cool water in tub and checks to make sure there is ice floating at the top of the ice tubs
13. Emergency equipment (AED, oxygen, thermometer, transport carts, etc.) ready for use

D. **During Practices:**
1. Monitor Heat Index minutes via internet weather report, Phone Applications and sling Psycrometer as needed (every 30 minutes)
2. Minimize warm up time in heat
3. Conduct warm ups in the shade or cooler (indoor) environments when possible
4. Communication with coaching staff of any situation changing
5. Increase breaks depending on heat
6. Lower intensity of workout depending on heat
7. Minimal equipment, clothing depending on heat
8. Ice, water, etc. available
9. Injured athletes observe practice from cool/shaded areas
10. Maintain cold tubs on Field “Crossroads”
11. Sports Medicine Staff field communication (cell phones, radios)
12. Heat illness recognition: Any athletes who display signs and symptoms of heat illness must have participation restricted based on the judgment of the sports medicine staff
13. Practice modification. Rest breaks should be planned to match conditions and intensity of activity. Minimize the amount of equipment and clothing worn in hot or humid conditions.

14. Pre-hydration and hydration during activity, **Review FWCD Hydration/Fluids Replacement Guideline.**

E. Post-Practice:

1. Communicate with coaches (injury report; weather forecast, etc.)
2. Communicate with student athletes at team meeting
 a. **Encourage student athletes to sleep at least 6-8 hours at night in a cool environment.**
 b. **Proper Hydration, encourage athletes to eat a well-balanced diet that includes proper hydration. (Review FWCD Hydration/Fluids Replacement Guideline)**
 c. Emphasize lots of fluids; low-fat meals; low caffeine
 d. Encourage consumption of lightly salted foods; no fast food; drink fluids with meal
 e. Advise that extra sodium may be required when exercising in hot conditions or on days with multiple practices, either in diet or rehydration beverages
 f. E-mail parents, place signs about heat illness
 g. Maintain weight charts. Note > 3% weight loss and monitor athletes for signs or symptoms heat illness closely and educate the student athlete regarding appropriate rehydration.
 h. Encourage athletes to use recovery cold tub. Cold whirlpool is also available post-practice for cryotherapy in athletic training room. Ice is added as needed to achieve a temperature of 55 degrees.
 i. Provide proper nutritional snacks and hydration options for the student athletes during pre-season training

VI. RETURN TO ACTIVITY:

If an athlete has experienced any of the previous heat related illnesses, he or she should be evaluated by a physician to determine a return to play strategy. Student athletes with exertional heat stroke should avoid exercise for a minimum of one week.
REFERENCES:

2) *University of Mobile Environmental Illness Protocol 7/23/08*

5) F. O’Connor et al., Sports Medicine Just the Facts, 2005

11) Inter-Association Task Force on Exertional Heat Illness Consensus Statement
APPENDIX A, HYDRATE:
Hey Falcons, let’s all work hard to stay safe exercising in the Texas heat. Remember, we must all:

H ydrate: Before, during and after all workout sessions.

Y ou: Make the effort to drink plenty of fluids.

D rink: Cold water & sport drinks (lots of them)!! Avoid fats, carbonated drinks & caffeine.

R e-hydrate: You must replace the fluids you lost working out.

A cclimate: Gradually increase workouts in the heat.

T rain: Regularly to improve your conditioning & skill level.

E veryone wins when you work hard to prevent heat illness.
APPENDIX B, Letter to Parents:

Dear FWCD Parent and/or Guardian,

During the summer months in our area, the temperature and humidity can reach dangerous levels. When you add exercising athletes to the situation, the chance of a heat-related problem drastically increases. In Texas, life threatening heat related illnesses are a serious problem.

NOTE: If at any time, before or during any practice, a FWCD Certified/Licensed Athletic Trainer, in consultation with the Athletic Director, feels that it is unsafe for the athletes to be practicing in the heat, they can suspend, postpone, shorten, or modify practice in any other way that they feel will prevent heat related injuries. Below is a list of K-12 procedures that will be followed when students are engaged in physical activity during hot and humid weather:

1) We will **NEVER**, under any circumstances, deny water to a student-athlete. We will **ALWAYS** have plenty of cool/cold water easily accessible to the exercising student-athletes.

2) We will allow the athletes to take a short water break for ten minutes per every hour exercised. K - 4 are 30-minute classes. Coaches will allow water breaks when necessary. When the temperatures are in the 100's, we will keep K-4 classes indoors.

3) At the beginning of the season, athletes will be gradually conditioned to the heat. Staying fit over the summer is the easiest way to prevent heat related problems from occurring.

4) We encourage our student-athletes to wear light, white, 100% cotton blend fabrics whenever possible. We also encourage them to make sure that they keep their clothes as dry as possible, **NOT** to wear a wet shirt out to practice, or wet their shirts down when there is still considerable practice remaining.

5) On days when the temperature is over 100 degrees, the Certified/Licensed Athletic Trainers, after consultation with the Athletic Director, may modify (reduce pads and/or shorten time), delay or cancel practices and/or games.

6) Parents, please remind your child to drink plenty of water at home, between classes, before practice, during practice and after practice. Water will not cause them to get cramps or to become "water logged."

7) Parents, please remind your child to keep track of their weight. If they lose a pound or two after a hot practice, it is considered normal. The athlete should gain the weight back before the next practice, or it becomes unsafe for them to participate.

8) Please remind your child to stay away from drinks that have a high sugar content or caffeine, especially prior to exercising. Sugar slows down the amount of water your body can absorb. Caffeine increases the heart rate, which can increase risk of a heat-related problem. Remind your child that it is not a good idea to eat just prior to exercise. This also inhibits the amount of water the body can absorb.

9) Have your child check their urine often. Dark urine (ice tea color) indicates that the body is dehydrated, which will lead to serious problems.

10) Please have your child read and become familiar with the "**HYDRATE**" sheet that will be posted around the FWCD athletic facilities and on the FWCD Athletic Website.

The FWCD Staff of Certified/Licensed Athletic Trainers and Coaches will do everything possible to reduce the potential for any heat related problems. The safety of your children is our top priority.

If you have any questions or concerns, please feel free to call “Trainer Ed” Chisholm, (817) 302-3243 or “Trainer Chelsea” Procter at FWCD, (817) 302-3265.
APPENDIX C, Letter to Coaches:

Heat and Humidity Guidelines:

During the summer months in our area, the temperature and humidity can reach dangerous heights. When you add exercising athletes to the situation, the chance of a heat-related problem drastically increases. In Texas, there are more life threatening heat related problems than any other serious athletic injuries. The good news is that ALL heat-related illnesses can be, and SHOULD BE prevented. Below is a list of some key points that need to be observed when you are coaching athletes in hot and humid conditions:

1) **NEVER**, under any circumstances, deny water to an athlete. ALWAYS have plenty of cool/cold water easily accessible to the exercising athletes.

2) Allow the athletes to take a short break for water for ten minutes for every hour of exercise.

3) In the beginning of the season, athletes must be gradually conditioned to the heat.

4) Encourage your athletes to wear light, white, 100% cotton blend fabrics whenever possible. Tell them to make sure that they keep their clothes as dry as possible. DO NOT wear a wet shirt out to practice or wet the shirts down when there is still a lot of practice remaining.

5) On hotter days, it may be necessary to remove some gear. On days when the temperature is over 100 degrees, the Athletic Trainers, after consultation with the Athletic Director, may require you to modify your practices (shorten outdoor exposure, remove some gear), delay or cancel outdoor practices and/or games.

6) Remind your athletes to drink plenty of water at home, between classes, before practice, during practice and after practice. Water should not cause them to get cramps or to become “water logged.”

7) Remind your athletes to keep track of their weight. If they lose a pound or two after a hot practice, it is considered normal. The athlete should gain the weight back before the next practice or it becomes unsafe for them to practice.

8) Remind your athletes to stay away from drinks that have a high sugar content or caffeine, especially prior to exercising. Sugar slows the amount of water your body can absorb. Caffeine increases the heart rate, which can increase risk of a heat-related problem. Remind athletes that is not a good idea to eat just prior to exercise, this also inhibits the amount of water the body can absorb.

9) Have your athletes check their urine. Dark urine indicates that the body is dehydrated, which will lead serious problems.

10) Make sure that you and your athletes read and become familiar with the "HYDRATE" postings around the athletic area. If you need more copies of this poster, please see the Athletic Trainers.
APPENDIX D, FWCD Heat Scale:

This gauge is reprinted from the First Aider, a National Athletic Trainer's Association Approved Publication.

It's not the Heat or the Humidity- It's the Combination
Although coaches always should be on the lookout for heat stress, this chart can help gauge your risk on a particular day.

<table>
<thead>
<tr>
<th>TEMP</th>
<th>HUMIDITY</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 80°F</td>
<td>Not Important</td>
<td>No Restrictions</td>
</tr>
<tr>
<td>80° - 90°</td>
<td>Less than 70%</td>
<td>Watch Athletes Carefully</td>
</tr>
<tr>
<td>80° - 90°</td>
<td>More than 70%</td>
<td>Caution- Take Frequent Breaks</td>
</tr>
<tr>
<td>90° - 100°</td>
<td>Less than 70%</td>
<td>Caution- Fluid Intake Critical</td>
</tr>
<tr>
<td>90° - 100°</td>
<td>More than 70%</td>
<td>DANGER- Best to suspend practice or move to a cooler time of day</td>
</tr>
<tr>
<td>More than 100°F</td>
<td>Not Important</td>
<td>DANGER- No Activity Recommended</td>
</tr>
</tbody>
</table>

The FWCD Athletic Administration expects the Program Director and/or the coach to contact the Athletic Trainers prior to each practice, to find out the temperature and relative humidity. The Athletic Trainers will make their recommendations to the Athletic Director based on the above guidelines. In addition to the above scale, further interpretation will be made to allow for a meaningful athletic experience for all when the Athletic Director makes the decision. The FWCD procedure will be:

- A dry bulb temperature reading in excess of 100°F will result in the recommendation of **modified and/or reduced** full-pad football practice.
- A heat index temperature reading in excess of 110°F will result in the recommendation of **modified and/or reduced** full-pad football practice.
- A dry bulb temperature reading in excess of 103°F will result in the elimination of **any** full-pad football practice and will limit the amount of outdoor exposure to one hour for any team.
- A heat index temperature reading in excess of 114°F will result in the elimination of **any** full-pad football practice and will limit the amount of outdoor exposure to one hour for any team.